200 MHz Variable Gain Photoreceiver

Features Adjustable transimpedance gain from 10² to 10⁸ V/A Wide bandwidth up to 200 MHz Si-PIN photodiode covering the 400 to 1000 nm wavelength range Large optical detector size 1 × 1 mm High dynamic input range up to 10 mW optical power Very low noise, NEP down to 76 fW/√Hz Switchable low pass filters for minimizing wideband noise Free-space input 1.035"-40 threaded, easily convertible to fiber optic input (FC and FSMA) with optionally available screw-on adapters Full manual and remote control capability **Applications** All-purpose low-noise photoreceiver (O/E converter) for the MHz range Time resolved optical pulse and power measurements Laser intensity noise measurements (RIN) Optical front-end for oscilloscopes, spectrum analyzers, A/D converters and RF lock-in amplifiers Block Diagram Buffer-amplifier and Current to voltage converter Programmable Programmable handwidth limiting AC/DC coupling gain amplifier Offset nulling OPTICAL 100 Ω ... 10 MΩ VOLTAGE OUTPUT

F E M T O

10 MHzFBW

Optocoupler

Parameter

郊人

DIG. CONTROL INPUTS Overload detector

DC-MONITOR

Supply voltage regulator

POWER

BS01-0E-300 R2

bias voltage

200 MHz Variable Gain Photoreceiver

Intended Use

The OE-300-SI-10 is a high speed variable gain photoreceiver. It is designed for fast and precise conversion of small optical signals into equivalent output voltages. Operation is mostly self-explanatory. If in doubt, consult this document or contact support@femto.de.

For safe operation, please refer to the damage thresholds specified in the "Absolute Maximum Ratings", "Temperature Range" and "Power Supply" sections of this document.

The operating environment must be free of smoke, dust, grease, oil, condensing moisture, and other contaminants that could affect the operation or performance.

Available Version OE-300-SI-10-FST

1.035"-40 threaded flange with internally threaded coupler ring (outer diameter 30 mm) for free space applications. Compatible with many optical standard accessories and for use with various types of fiber connector adapters.

Optionally available:

Fiber adapters PRA-FC, PRA-FCA and PRA-FSMA. With the relative large 1 \times 1 mm photodiode installed in the OE-300-SI-10 input coupling is not critical. However, standard SM 9/125 fibers (PC or APC) with low numerical aperture (NA) are recommended for ensuring near 100% coupling efficiency.

Related OE-300 Models See separate datasheets for following models on www.femto.de:

OE-300-SI-30-FST Si-PIN, Ø 3 mm, 320 - 1000 nm 1.035"-40 threaded flange

OE-300-IN-01-FC InGaAs-PIN, Ø 80 μm, 900 - 1700 nm

FC fiber receptacle only

OE-300-IN-03-FST InGaAs-PIN, Ø 300 μm, 800 - 1700 nm

1.035"-40 threaded flange

Available Accessories PRA-F0

PRA-FCA PRA-FSMA

Fiber-adapter with external 1.035"-40 thread

PRA-PAP

Alternative mounting option: post adapter plate, easy to mount on FEMTO photoreceiver series OE, FWPR, PWPR, HCA-S and LCA-S

PS-15-25-L

Power Supply input: 100 – 240 VAC output: ±15 VDC

SOPHISTICATED TOOLS FOR SIGNAL RECOVERY

EMTO

0E-300-SI-10_R3/TH,JMa/11APR2024 Page 2 of 11

200 MHz Variable Gain Photoreceiver

Available Accessories (continued)

LUCI-10

Compact digital I/O interface for USB remote control, supports opto-isolation of amplifier signal path from PC USB port, 16 digital outputs, 3 opto-isolated digital inputs, bus-powered operation

	Control of the second of the s							
Specifications	Test conditions	$V_S=\pm 15$ V, $T_A=25$ °C, output load impedance 50 Ω , warm-up 20 minutes (min. 10 minutes recommended)						
Gain	Transimpedance gain Gain accuracy	$1\times10^2\dots1\times10^8$ V/A (output load 50 $\Omega)$ ±1 % electrical, between settings						
Frequency Response	Lower cut-off frequency Upper cut-off frequency (–3 dB)	DC / 100 Hz, switchable up to 200 MHz (see table below), switchable to 1 MHz or 10 MHz						
Input	Optical CW saturation power Noise equivalent power (NEP)	see table below see table below						
Performance depending on Gain Setting	Gain setting (low noise) (V/A) Upper cut-off frequency (-3 dB) Rise/fall time (10 % - 90 %) NEP (/√Hz, @850 nm) Measured at Integr. input noise (RMS)* CW saturation power (@ 850 nm) Gain setting (high speed) (V/A) Upper cut-off frequency (-3 dB) Rise/fall time (10 % - 90 %) NEP (/√Hz, @ 850 nm) Measured at Integr. input noise (RMS)* CW saturation power (@ 850 nm) * The integrated input noise is me setting (referred to 850 nm). The resetting (referred to 850 nm). The resetting (referred peak-peak noise) The output noise is given by: The integrated noise will be reduce "10 MHz" instead of "FBW". This	10 ³ 175 MHz 2.3 ns 231 pW 18 MHz 4.5 µW 1.7 mW assured with measurement is a 1st of the can be can	3.25 ns 25 pW 8 MHz 580 nW 1.7 mW 10 ⁴ 80 MHz 3.45 ns 10 pW 8 MHz 440 nW 170 µW n a shaded ent bandwider roll-oral culated file the shaded ent bandwider and the shaded ent bandwider and the shaded ent bandwider roll-oral culated file the shaded ent bandwider and the shaded ent bandwider and the shaded ent bandwider roll-oral culated file the shaded ent bandwider and the shaded ent bandwider and the shaded ent bandwider and the shaded ent bandwider ent bandwi	dth is 3 × t off. rom the RM = P Input noise RM = U Output noise R etting the lov	he upper compared as S noise as $S \times G$ as $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$ and $S \times G$ and $S \times G$ are $S \times G$	ut-off frequ follows: Input noise RMS 3	ency at × gain × 6 z" or	
Detector	Detector type Active area Spectral range Sensitivity Dark current	Si-PIN photodiode 1 mm × 1 mm 400 - 1000 nm 0.58 A/W typ. (@ 850 nm) 0.12 nA typ.						
Output	Output voltage rang Output impedance Max. output current	± 1 V (@ 50 Ω output load), for linear amplification 50 Ω (designed for 50 Ω load) ± 40 mA (short-circuit proof)						

SOPHISTICATED TOOLS FOR SIGNAL RECOVERY

Output offset compensation

Slew rate

F E M T O

adjustable by offset potentiometer and external control

voltage, output offset compensation range min. ±100 mV

OE-300-SI-10_R3/TH,JMa/11APR2024 Page 3 of 11

1000 V/µs

200 MHz Variable Gain Photoreceiver

Specifications (continued)					
DC Monitor Output	Monitor output gain	Mode Low noise High speed	Monitor gain Gain setting divided by -1 Gain setting divided by -10		
	Monitor output polarity Monitor output voltage range Monitor output bandwidth Monitor output impedance	inverting ±1 V (@ ≥1 M DC 1 kHz 1 kΩ (designe	Ω load) d for ≥1 MΩ load)		
Indicator LED	Function	overload			
Digital Control	Control input voltage range Control input current Overload output	LOW bit: $-0.8 \text{ V} \dots +1.2 \text{ V}$, HIGH bit: $+2.3 \text{ V} \dots +12 \text{ V}$ 0 mA @ 0 V, 1.5 mA @ $+5 \text{ V}$, 4.5 mA @ $+12 \text{ V}$ non active: $<0.4 \text{ V}$ @ 0 -1 mA active: typ. 5 5.1 V @ 0 2 mA			
Ext. Offset Control	Control voltage range Offset control input impedance	±10 V 15 kΩ			
Optical Input Connector	Material FST flange Material FST coupler ring	1.4305 stainless steel, nickel-plated 1.4305 stainless steel, glass bead blasted			
Power Supply	Supply voltage Supply current	± 15 V (± 14.75 V ± 16.5 V) ± 110 / -90 mA typ. (depends on operating conditions, recommended power supply capability min. ± 200 mA)			
Case	Weight Material	360 g (0.79 lbs) AlMg4.5Mn, nickel-plated			
Temperature Range	Storage temperature Operating temperature	-40 °C +80 °C 0 °C +60 °C			
Absolute Maximum Ratings	Optical input power (CW) Digital control input voltage Analog control input voltage Power supply voltage	12 mW -5 V/+16 V relative to digital ground DGND (pin 9) ±15 V relative to analog ground AGND (pin 3) ±20 V			
Connectors	Input Output Power supply	BNC jack (fema	eaded flange for free space applications ale) 1S, 3-pin fixed socket 1S, 3-p		

SOPHISTICATED TOOLS FOR SIGNAL RECOVERY

F E M T O

0E-300-SI-10_R3/TH,JMa/11APR2024 Page 4 of 11

200 MHz Variable Gain Photoreceiver

Connectors (continued)							
	Control port	Sub-D 25-pin, female, qual. class 2					
		Pin 2: —12 V (sta Pin 3: AGND (and Pin 4: +5 V (stab Pin 5: digital outp Pin 6: DC Monito Pin 7: NC Pin 8: offset cont Pin 9: DGND (gro Pin 10: digital cont Pin 11: digital cont Pin 12: digital cont Pin 13: digital cont Pin 14: digital cont Pin 15: upper cut-	rol voltage ir und for digit trol input: ga trol input: ga trol input: di trol input: AC trol input: hiç off frequence off frequence output currer	r supply out for pins 1 - supply out (referred to the put fall control print, LSB in fin, MSB c/DC gh speed / y limit 10 My limit 1 Miles	ntput*) 8) put*) o pin 3) oins 10 - 16 low noise MHz		
Remote Control Operation	General	Remote control input bits are opto-isolated and connected by a logical OR function to the local switch settings. For remote control set the corresponding local switches to "Remote", "DC", "L" (low noise mode) and "FBW", and select the desired setting via a bit code at the corresponding digital inputs. Mixed operation, e.g. local AC/DC setting and remote controlled gain setting, is also possible.					
	Gain setting	Low noise High speed Gain (V/A) Gain (V/A) Pin 14=LOW Pin 14=HII 10 ² 10 ³ 10 ⁴ 10 ⁴ 10 ⁵ 10 ⁵ 10 ⁶ 10 ⁶ 10 ⁷ 10 ⁷ 10 ⁸	Pin 12	Pin 11 LOW LOW HIGH HIGH LOW LOW	Pin 10 LSB LOW HIGH LOW HIGH LOW		
	AC/DC setting	Coupling Pin 13 DC LOW AC HIGH					
	Low pass filter setting	Upper cut-off freq. limit full bandwidth 10 MHz 1 MHz	Pin 15 LOW HIGH LOW	Pin 16 LOW LOW HIGH			
	High speed / low noise setting	Mode	Pin 14				

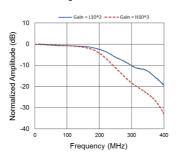
SOPHISTICATED TOOLS FOR SIGNAL RECOVERY

F E M T O

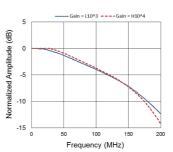
OE-300-SI-10_R3/TH,JMa/11APR2024 Page 5 of 11

Datasheet 0E-300-SI-10 200 MHz Variable Gain Photoreceiver Scope of Delivery OE-300-SI-10, internally threaded coupler ring, LEMO® 3-pin connector, datasheet, transport package 0E-300-SI-10-FST Ordering Information 1.035"-40 threaded flange for free space applications and for use with various types of optical standard accessories Spectral Responsivity 0.7 0.6 0.5 Sensitivity in A/W 0.4 0.3 0.2 0.1 0 400 500 600 700 800 900 1000 1100 Wavelength in nm DB-Sens-0E-300-SI-10_R02 SOPHISTICATED TOOLS FOR SIGNAL RECOVERY

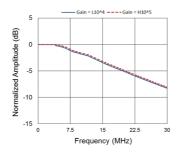
OE-300-SI-10_R3/TH,JMa/11APR2024 Page 6 of 11

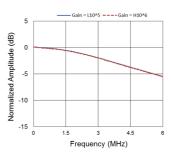

200 MHz Variable Gain Photoreceiver

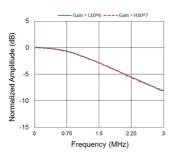
Typical Performance Characteristic

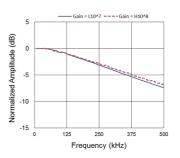

Frequency response

 $V_{\text{Supply}} = \pm 15 \ V_{\text{DC}}; \ R_{\text{Load}} = 50 \ \Omega$


Gain setting: L10², H10³

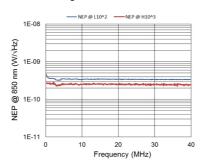

Gain setting: L103, H104


Gain setting: L104, H105

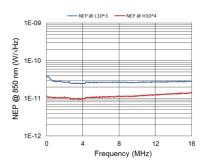

Gain setting: L105, H106

Gain setting: L10⁶, H10⁷

Gain setting: L10⁷, H10⁸

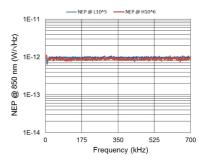

F E M T O

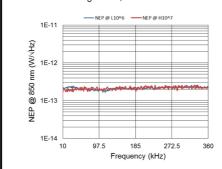
200 MHz Variable Gain Photoreceiver

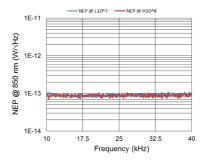

Typical Performance Characteristic (continued)

Input noise equivalent power (NEP)


Gain setting L10², H10³

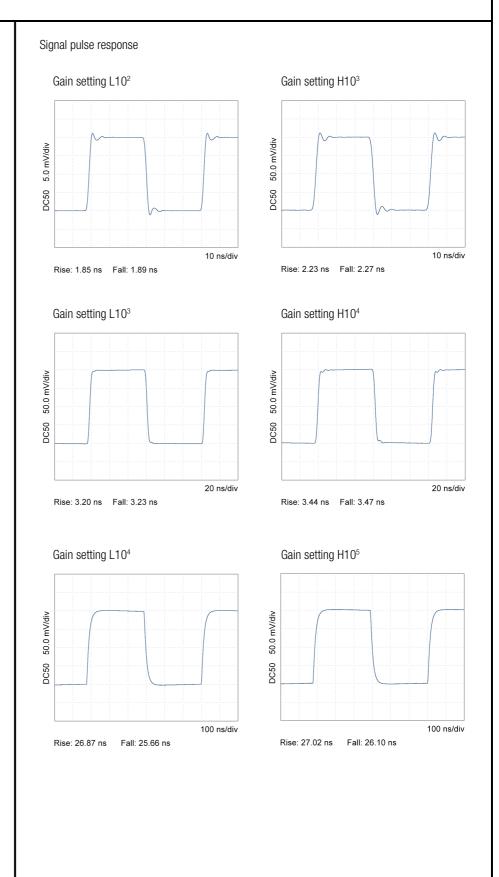

Gain setting L103, H104


Gain setting: L10⁴, H10⁵


Gain setting: L105, H106

Gain setting: L10⁶, H10⁷

Gain setting: L10⁷, H10⁸

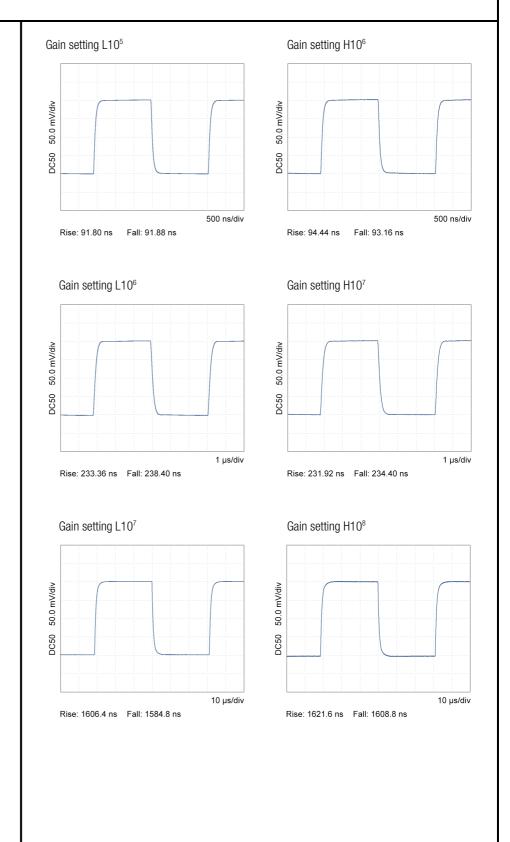

SOPHISTICATED TOOLS FOR SIGNAL RECOVERY

F E M T O

Page 8 of 11

200 MHz Variable Gain Photoreceiver

Typical Performance Characteristic (continued)

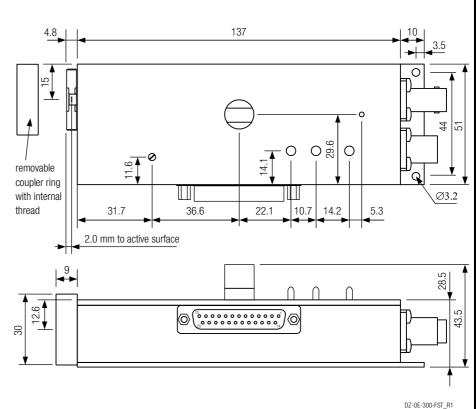


SOPHISTICATED TOOLS FOR SIGNAL RECOVERY

F E M T O

200 MHz Variable Gain Photoreceiver

Typical Performance Characteristic (continued)


SOPHISTICATED TOOLS FOR SIGNAL RECOVERY

F E M T O

200 MHz Variable Gain Photoreceiver

Dimensions

0E-300-SI-10-FST

all dimensions in mm unless otherwise noted

FEMTO Messtechnik GmbH Klosterstr. 64 10179 Berlin · Germany Phone: +49 30 280 4711-0 Fax: +49 30 280 4711-11 Email: info@femto.de www.femto.de Specifications are subject to change without notice. Information provided herein is believed to be accurate and reliable. However, no responsibility is assumed by FEMTO Messtechnik GmbH for its use, nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of FEMTO Messtechnik GmbH. Product names mentioned may also be trademarks used here for identification purposes only.

 $\ensuremath{\mathbb{O}}$ by FEMTO Messtechnik GmbH \cdot Printed in Germany

SOPHISTICATED TOOLS FOR SIGNAL RECOVERY

F E M T O

OE-300-SI-10_R3/TH,JMa/11APR2024 Page 11 of 11